The “naive_bayes” Function in R
- Package: naivebayes 
- Purpose: Fit a Naive Bayes classifier to data. 
- General class: Model 
- Required argument(s): 
- x: Predictor variables (data frame or matrix). 
- y: Response variable (vector). 
- Notable optional arguments: 
- laplace: Laplace smoothing parameter (default is 0). 
- usekernel: Boolean indicating if kernel density estimation should be used for continuous variables (default is FALSE). 
- Example: 
- # Load the required library 
 library(naivebayes)
 
 # Example dataset
 data(iris)
 
 # Fit a Naive Bayes model
 model <- naive_bayes(Species ~ ., data = iris, laplace = 1)
 
 # Summary of the model
 print(model)
 
 # Predict on new data (although in this example, the data is not new)
 predictions <- predict(model, iris)
 
 # Print predictions
 head(predictions)
- In this example, the naive_bayes function from the naivebayes package is used to fit a Naive Bayes classifier to the iris dataset. The response variable is Species, and all other columns are used as predictor variables. Laplace smoothing is applied with a parameter value of 1. The model is then used to make predictions on the same dataset. 
 
                        