The “parRapply” Function in R
- Package: parallel 
- Purpose: Applies a function to each row of a matrix using a cluster for parallel processing. 
- General class: Parallel computing 
- Required argument(s): 
- cl: A cluster object specifying the cluster to use for parallel processing. 
- X: A matrix to be processed. 
- fun: The function to apply to each element of X. 
- Notable optional arguments: 
- ...: Additional arguments passed to the function fun. 
- Example: 
- # Load the parallel library 
 library(parallel)
 
 # Create a cluster object with 2 cores
 cl <- makeCluster(2)
 
 # Create a matrix to operate on
 Example_matrix <- matrix(1:25, ncol = 5, byrow = TRUE)
 
 # Apply the mean function to each row
 result <- parRapply(cl, Example_matrix, mean)
 
 # Close the cluster
 stopCluster(cl)
 
 # Print the result
 print(result)
- This example demonstrates how to use the parRapply function from the parallel package to apply a function (mean) to each row of a matrix (Example_matrix) in parallel using a cluster object (cl). The ... argument allows passing additional arguments to the function “mean”. The output is a vector containing the mean of elements in each row of the matrix. 
 
                        