The “sampling” Function in R
- Package: rstan 
- Purpose: Draws samples from a Stan model 
- General class: Bayesian inference 
- Required argument(s): 
- object: A stan model compiled with a function like “stan_model”. 
- data: List or environment containing data for the Stan model. 
- Notable optional arguments: 
- pars: Names of parameters to monitor and return samples for. 
- chains: Number of Markov chains to run. 
- cores: Number of CPU cores to use for parallelization. 
- iter: Number of iterations per chain. 
- warmup: Number of warmup iterations per chain. 
- thin: Thinning rate for the returned samples. 
- seed: Random seed for reproducibility. 
- Example: 
- # Load the rstan library 
 library(rstan)
 
 # Define the Stan model code
 model_code <- '
 data {
 int<lower=0> N;
 real y[N];
 }
 parameters {
 real mu;
 real<lower=0> sigma;
 }
 model {
 y ~ normal(mu, sigma);
 }
 '
 
 # Compile the Stan model
 model <- stan_model(model_code = model_code)
 
 # Fit the model using MCMC sampling
 N = 100
 fit <- sampling(model, data = list(N = N, y = rnorm(N)))
 
 # View summary of posterior samples
 summary(fit)
- This example demonstrates how to use the “sampling” function from the rstan package to draw samples from a compiled Stan model. The function requires the result of fitting a Stan model (stanfit object) as input and allows specifying various optional arguments like parameters to monitor, number of chains, iterations, warmup, and more for controlling the sampling process. 
 
                        