The “stan” Function in R
- Package: rstan 
- Purpose: Interface to Stan for Bayesian inference 
- General class: Statistical modeling 
- Required argument(s): 
- model_code or file: Stan model code or file containing the Stan model. 
- data: List or environment containing data for the Stan model. 
- Notable optional arguments: 
- pars: Parameters to monitor. 
- chains: Number of Markov chains. 
- cores: Number of cores to use for parallel computation. 
- iter: Number of iterations. 
- warmup: Number of warmup iterations. 
- thin: Thinning parameter. 
- seed: Random seed for reproducibility. 
- algorithm: Sampling algorithm (e.g., “NUTS”). 
- control: Control parameters for the sampling algorithm. 
- Example: 
- # Load the rstan library 
 library(rstan)
 
 # Define the Stan model
 model_code <- '
 data {
 int<lower=0> N;
 real y[N];
 }
 parameters {
 real mu;
 real<lower=0> sigma;
 }
 model {
 y ~ normal(mu, sigma);
 }
 '
 
 # Generate synthetic data
 N <- 100
 data <- list(N = N, y = rnorm(N, 0, 1))
 
 # Run the Stan model
 fit <- stan(model_code = model_code, data = data, chains = 4, iter = 1000)
 summary(fit)
- This example demonstrates how to use the “stan” function from the rstan package to perform Bayesian inference using a simple normal distribution model. It involves defining the Stan model, preparing data, running the model with optional arguments like chains and iterations, and then summarizing the results. 
 
                        